Chem. Ber. 100, 795-801 (1967)

Eckhart Härle, Wolfgang Koch und Erich Hecker

Chemie des Phorbols, II¹⁾

Über das Kohlenstoffskelett des Phorbols

Aus dem Biochemischen Institut des Deutschen Krebsforschungszentrums Heidelberg

(Eingegangen am 2. August 1966)

Die Dehydrierung von Phorbol und Phorbol-f-ol sowie die Dehydratisierung von Phorbol-f-ol führt zu Azulenen. Dies deutet darauf hin, daß Phorbol möglicherweise eine Hydroazulen-Struktur enthält.

Phorbol ist vermutlich ein Diterpen, dessen Strukturelemente bekannt sind¹). Versuche zur Ermittlung des Kohlenstoffskeletts von Phorbol haben bereits *Flaschenträger* und Mitarbb. unternommen^{2,3}).

Dabei wurde nach Säurebehandlung von Phorbol "Crotophorbolon" und daraus in wenig übersichtlicher Reaktion und mit nur 1% Ausbeute eine neutrale Substanz vom Schmelzpunkt 148–150° erhalten, deren energische Reduktion mit Platin und Wasserstoff und danach mit Jodwasserstoff und Phosphoniumjodid einen öligen Kohlenwasserstoff ergab, dessen Analyse zwischen den Bruttoformeln $C_{20}H_{36}$ und $C_{18}H_{32}$ nicht unterscheiden ließ. – *Arroyo* und *Holcomb*⁴) geben an, als Produkte der Dehydrierung von Phorbol mit Palladium 1-Methyl-phenanthren und einen weiteren Kohlenwasserstoff vom Retentyp erhalten zu haben. Unter den im folgenden beschriebenen Dehydrierungsbedingungen konnten Kohlenwasserstoffe mit Phenanthrenstruktur nicht gefunden werden.

Die Dehydrierung von Phorbol oder Phorbol-f-ol *) mit Selen oder Palladium/Tierkohle führt zu Gemischen von blauen und violetten Azulenen, in denen sich dünnschichtchromatographisch fünf bis sechs Komponenten nachweisen lassen (Tab. 1). Dieselben Azulene werden in höheren Ausbeuten aus Phorbol-f-ol durch trockenes Erhitzen ohne Zusätze erhalten (Tab. 1). Phorbol gibt unter diesen Bedingungen keine Azulene.

Von den Produkten der thermischen Zersetzung des Phorbol-f-ols konnten die Azulene " α ", " β ", " γ " und in sehr geringer Menge ein Gemisch der Azulene " δ_1 " und " δ_2 " dünnschichtchromatographisch isoliert werden. Das Azulen α ist ein instabiles blaues Öl, das sich rasch zersetzt. Das kristalline violette Azulen β schmilzt bei

^{*)} Zur Bezeichnung der Sauerstoff-Funktionen vgl. l. c.¹⁾.

I. Mitteil.: E. Hecker, Ch. v. Szczepanski, H. Kubinyi, H. Bresch, E. Härle, H. U. Schairer und H. Bartsch, Z. Naturforsch. 21b, 1204 (1966).

²⁾ B. Flaschenträger, Zangger-Festschrift, S. 857, Zürich 1934.

³⁾ B. Flaschenträger und F. v. Falkenhausen, Liebigs Ann. Chem. 514, 252 (1934).

⁴⁾ E. R. Arroyo und J. Holcomb, Chem. and Ind. 1965, 350.

			Reaktionsprodukte ^{*)} und R _F -Werte ^{**)}							
Vers. Nr.	einge- setzte Substanz	Reaktions- bedingungen	α blau	α ₁ farbl.	β viol.	Y blau	δ ₁ blau- grün	δ ₂ blau- viol.	ε _ι rot	ε viol.
			0.9	0.9	0.75	0.7	0.5	0.5	0.2	0.1
l	Phorbol	20 Stdn., 320°, 760 Torr, mit Selen		+	÷	(+)	+	+		-∔•∳•
2	Phorbol	20 Stdn., 320°, 12 Torr, mit Selen			+	÷	(+)	(+)	_	
3	Phorbol- f-ol	20 Stdn., 320°, 760 Torr, mit Selen	-	_	(+)	(+)	(+)	(·+)		_
4	Phorbol- f-ol	20 Stdn., 320°, 12 Torr, mit Pd auf Tierkohle	(+)	_	+	(+)	++	++	(+)	_
5	Phorbol- f-ol	20 Stdn., 320°, 12 Torr, mit Selen	(+)		++	+++	╪┿┽	++	(+)	(+)
6	Phorbol- f-ol	12 Torr, 3 Stdn., 320°, trocken erhitzt ohne Zusätze	+++	(+)	+++	+++	++	+	(+)	

Tab. 1. Reaktionsprodukte der Dehydrierung bzw. thermischen Zersetzung von Phorbol und Phorbol-f-ol auf dem Dünnschichtchromatogramm

*) Die relativen Mengen, in denen die Substanzen entstanden sind, werden an Hand des Dünnschichtchromatogramms abgeschätzt und mit (+), +, ++ und +++ bezeichnet.

**) R_F-Werte in der "ungesättigten Kammer" auf der Kieselgel-Dünnschicht (System Benzol/Essigester 20:1). Die angeführten Flecke sind im UV- oder Tageslicht zu erkennen. Nicht in die Tabelle aufgenommen wurden UV-löschende braune und UV-löschende farblose Substanzen, die in geringer und wechselnder Menge entstehen, sowie UV-löschende Flecke geringer Intensität am Start, an der Front und bei R_F-Werten um 0.6.

76-77° und ist relativ beständig. Die Azulene γ sowie δ_1 und δ_2 wurden als beständige dunkelblaue Öle erhalten. Die Substanzen α , β und γ lösen sich in 50-60-proz. Schwefelsäure mit gelber, δ mit rosaroter Farbe. Sie zeigen darin und in der entsprechenden Veränderung des UV-Spektrums das charakteristische Verhalten von Azulenen. Die Azulene β und γ können aus der sauren Lösung nach Verdünnen unverändert zurückisoliert werden.

Die UV-Spektren der Azulene α , β und γ sind einander sehr ähnlich (vgl. Abbild. und Tab. 2) und entsprechen dem Azulentyp⁵⁾. Verglichen mit einfachen Azulenen ist

⁵⁾ H. H. Jaffé und M. Orchin, Theory and Applications of Ultraviolet Spectroscopy, S. 339, John Wiley and Sons, Inc., New York 1964.

UV-Spektrum des Azulens ß aus Phorbol bzw. Phorbol-f-ol, in Cyclohexan

der Schwerpunkt der Absorption nach längeren Wellen verschoben, wie es bei Benzazulenen⁶⁾ sowie Azulenen mit Carbonylsubstituenten⁷⁾ bekannt ist. Die IR-Spektren der Azulene β und γ zeigen eine Carbonylbande bei 1708 bzw. 1700/cm.

Azulen α		A	Azulen β			Azulen	Υ	Azule	n ði
in Cyclo- hexan	in Cyc	lohexan	in 60-pr	oz. H2SO4*)	in Cyc	lohexan	in 60-proz. H2SO4*)	in Cyclo- bexan	in 60-proz. H2SO4*)
λ _{max}	λ _{max}	٤max	λ _{max}	€max	λ _{max}	ε _{max}	λ _{max}	λ _{max}	λ _{max}
	226	12 500			227	15 300			
238	(240)	(11050)	235	ca. 12000	(250)	(17200)	231	230	229
	261	11100	275	ca. 11500	256	17800	275	265	276
293	287	18900			287	23 400			
307	298	26700	(295)	ca. 9500	297.5	28 200	(300)	306	
	316	6700			313	10700			316
328	329	8 600	323	ca. 4500	327	14 300	335	330	(335)
	354	1970			(355)	(3 200)			
	362	2 300							
372	370	3 30 0			370	5450		375	
	(380)	(2400)			378	5 600			
	390	2 2 5 0			388	6800		390	
396			410	ca. 6000	398	4 300	400	410	420
	558	400							530
570	(595)	(360)			600	580		580-620	
610					(615)	(560)			
	(650)	(180)			(650)	(500)		(675)	
					(720)	(200)		(750)	

Tab. 2. UV-Absorptionen der Azulene α , β , γ und δ_1 . Hauptmaxima kursiv

*) Nach Ausschütteln aus dem gleichen Volumen Cyclohexanlösung mit 60-proz. Schwefelsäure.

Durch hochauflösende Massenspektrometrie ließ sich für das Azulen β die Bruttoformel C₁₆H₁₆O, für das Azulen γ C₁₉H₂₀O ermitteln.

⁶⁾ E. Kloster-Jensen, E. Kováts, A. Eschenmoser und K. E. Heilbronner, Helv. chim. Acta 39, 1051 (1956).

⁷⁾ E. Heilbronner und R. Gerdil, Helv. chim. Acta 39, 1996 (1956).

Im Kernresonanz-Spektrum des Azulens β sind zwischen 6.96 und 7.96 ppm die Singuletts von 4 nicht koppelnden aromatischen Protonen zu erkennen. Die Intensität eines Singuletts bei 2.58 ppm entspricht 2 an Doppelbindungen stehenden Methylgruppen. Ein Dublett bei 1.34 ppm zeigt die Methylgruppe einer CH-CH₃-Gruppierung an. Ein tertiäres Proton erscheint als Multiplett bei etwa 2.75 ppm, steht also α -ständig zu einer Doppelbindung. Durch Einstrahlung bei 2.75 ppm werden die Methylgruppe und eine an einer Doppelbindung stehende Methylengruppe entkoppelt. Dies führt zu zwei möglichen Teilstrukturen 1 bzw. 2, da nicht entschieden werden kann, ob die CH-CH₃-Gruppe der C=O-Doppelbindung oder einer C=C-Doppelbindung des Azulengerüstes benachbart steht. Faßt man alle Daten zusammen, so können für das Azulen β die Teilstrukturen:

aufgestellt werden. Damit sind alle Substituenten am Kohlenstoffgerüst des Azulens β bekannt: 4 einzeln stehende Wasserstoffe, 2 an Doppelbindungen stehende Methylgruppen und ein angegliederter Methyl-cyclopentenon-Ring, dessen Doppelbindung Teil des Azulensystems ist.

Die vorliegenden Befunde können als Hinweis auf eine mögliche Hydroazulenstruktur des Phorbols verstanden werden.

Für das Kohlenstoffskelett des Phorbols sind in den letzten Jahren mehrere Vorschläge zur Diskussion gestellt worden. Arroyo und Holcomb⁴) schlugen auf Grund ihrer Dehydrierungsbefunde eine Hydrophenanthren-Struktur vor. Sie erwähnen diese Struktur jedoch in einer späteren Arbeit⁸) nicht mehr, sondern diskutieren ohne nähere Begründung ein ganz anderes Kohlenstoffskelett. Dies enthält alle Strukturelemente unseres ersten Strukturvorschlags⁹) für Phorbol, steht jedoch hinsichtlich der Anordnung der primären Allylalkoholund α . β -ungesättigten Carbonylgruppe im Widerspruch zu den KMR-Daten des Phorbols^{1,9}). Der erste Strukturvorschlag⁹) wurde von uns inzwischen auf Grund neuer chemischer Daten und zirkulardichroitischer Messung revidiert¹).

Herrn Dr. J. Sonnenbichler und Fräulein G. Schild, Max-Planck-Institut für Biochemie in München, und Herrn Dr. A. Melera, Varian Associates in Zürich, möchten wir für die Messung von KMR-Spektren herzlich danken. Herrn Dr. W. Vetter, Fa. Hoffmann-La Roche in Basel, danken wir für die Messung der Massenspektren.

⁸⁾ E. R. Arroyo und J. Holcomb, J. med. Chemistry 8, 672 (1965).

⁹⁾ E. Hecker, H. Kubinyi, Ch. v. Szczepanski, E. Härle und H. Bresch, Tetrahedron Letters [London] 1965, 1837; E. Hecker, H. Kubinyi, H. Bresch und Ch. v. Szczepanski, J. med. Chemistry 9, 246 (1966).

Beschreibung der Versuche

Die UV-Spektren wurden mit einem Beckman-Spektralphotometer DK 2A aufgenommen.

IR-Spektren sind mit dem Perkin-Elmer-Spektralphotometer 521 gemessen.

KMR-Spektren wurden in den Geräten A 60 und HR 100 der Fa. Varian Associates mit den entsprechenden Zusätzen zur Spinentkopplung aufgenommen. Als innerer Standard diente Tetramethylsilan.

Die Messung von Massenspektren erfolgte an dem Gerät MS-9 der Fa. AEl Manchester.

Dehydrierung und thermische Zersetzung von Phorbol und Phorbol-f-ol: 80 mg Phorbol oder Phorbol-f-ol werden allein oder mit der doppelten Menge Dehydrierungsmittel (s. Tab. 1) in einem geschlossenen Glasrohr (6-7 mm Durchmesser) bei einem Druck von 12 bzw. 760 Torr in einem Metallbad von $300-320^{\circ}$ trocken erhitzt. Im kühlen Teil des Rohres schlägt sich allmählich ein blaugrünes Harz nieder; dieses wird nach Zerschneiden des Glasrohres mit Essigester herausgespült. Die Auftrennung des Reaktionsproduktes und die Reinigung der einzelnen Substanzen erfolgt durch mehrmalige präparative Dünnschichtchromatographie auf äthanolgewaschenen, getrockneten Platten (Kieselgel G, Merck) bei 4° in CO₂-Atmosphäre mit den Fließmitteln Essigester/Benzol (1:30) für das Gesamtgemisch, Cyclohexan/Petroläther (1:1) für die Reinigung von Azulen α und Tetrachlorkohlenstoff/Methylenchlorid (1:1) für die Reinigung der Azulene β und γ .

Aus insgesamt 50 Ansätzen (4.0 g Phorbol-f-ol) werden unter den Bedingungen von Tab. 1, Versuch Nr. 6, erhalten:

Azulen a: ca. 3 mg eines blauen, zähflüssigen Öls, das sich rasch unter Bildung eines braunen Harzes zersetzt.

Azulen β : 8 mg violette Kristalle, die nach Umkristallisieren aus Methanol/Wasser bei 76-77° (unkorr.) schmelzen.

Azulen y: 4 mg eines zäh-viskosen dunkelblauen Produkts.

Azulen δ_1 und δ_2 : ca. 2 mg Gemisch als zähviskoses dunkelblaues Öl.

Spektroskopische Daten der Azulene sind in den Tabb. 2-6 wiedergegeben.

Zuordnung	Azulen β [cm ⁻¹]	Azulen γ [cm ⁻¹]
vCH	2960-2880	2960-2880
vс=0	1708	1700
	1615	1615
	1575	1553
VCH aromat.	1456	1450
	1375	1375
	1231	1237
		1220

Tab. 3	. IR	-Daten	der	Azulene	β	und •	Y ((KBr))
--------	------	--------	-----	---------	---	-------	-----	-------	---

Lage (ppm)	Multiplizität	Integration (Protonen)	Z	luordnung
7.96 7.76 7.20 6.96	S S S	1 1 1	4 ×	≫н
2.58	S	6	2 ×	≻−CH ₃
3.70 (с) 2.92 (с) 2.75 (b)	M M M	6		C=X (b) CH-CH ₃ (a)
1.34 (a)	D (<i>J</i> = 7 Hz)			(c) CH_2 C=Y

Tab. 4. Kernresonanzspektrum des Azulens β in CCl₄, 60 MHz

Tab. 4a. Doppelresonanzmessung des Azulens β in CCl₄, 100 MHz

eingestrahlt bei (ppm)	beobachtet bei (ppm)	Änderung der Multiplizität
	1.36 (a)	$\mathbf{D} \longrightarrow \mathbf{S}$
2.75 (b)	2.92 (c)	$M \longrightarrow D$
	3.70 (c)	$M \longrightarrow D$

Elektronen- energie [eV]	m/e	relative Intensität [%]	Summen- formel	Zuordnung
	268	3		Verunreinigung A ⁺
12	224.1212	100	$C_{16}H_{16}O$	M+
	210	8		Verunreinigung B ⁺
	268	3	_	Verunreinigung ,,A"*)
	25 3	4	_	A+ - 15
	224.1212	100	C ₁₆ H ₁₆ O	M +
	210	10	—	Verunreinigung ,,B"*)
70	209	10		M ⁺ - 15
	195	4	-	B ⁺ - 15
	181.1005	24	C ₁₄ H ₁₃	$M^+ - CH_3CO \cdot$
	165.0698	30	$C_{13}H_{9}$?

*) Die Substanzen "A" und "B" zeigen von der Hauptreihe M getrennte Abspaltungsmuster. Sie werden daher und auf Grund der geringen Intensität als Verunreinigungen angesprochen.

Elektronen- energie [eV]	m/e	relative Intensität [%]	Summen- formel	Zuordnung
	266.1693	37	C19H22O	M +
	238	20	_	Verunreinigung ,,C"
12	224.1219	100	$C_{16}H_{16}O$	$M^+ - C_3 H_6$ (Propylen)
	210	25	_	Verunreinigung "D"
	266.1693	27	C19H22O	M +
	251	58	_	M ⁺ - 15
	238.1367	15	C ₁₇ H ₁₈ O	?
	224.1219	100	C16H16O	$M^+ - C_3 H_6$ (Propylen)
	223.1137	63	C ₁₆ H ₁₅ O	$M^+ - C_3 H_7$ (Propylen)
70	210.1036	27	C15H14O	Verunreinigung ,,C ⁺ ^{••}
	209	34		$M^{+} - C_{3}H_{6} - 15$
	195	16	_	"C ⁺ " – 15
	183	27	_	?
	181	20		$M^+ - C_3H_6 - CH_3CO_6$
	165	60		?

Tab. 6. Massenspektrum *) des Azulens Y

*) Die Substanzen "C" und "D" zeigen von der Hauptreihe M getrennte Abspaltungsmuster. Sie werden daher und auf Grund der geringen Intensität als Verunreinigungen angesprochen.

[327/66]